97 research outputs found

    Deriving the dietary approaches to stop hypertension (DASH) score in women from seven pregnancy cohorts from the European alphabet consortium

    Get PDF
    The ALPHABET consortium aims to examine the interplays between maternal diet quality, epigenetics and offspring health in seven pregnancy/birth cohorts from five European countries. We aimed to use the Dietary Approaches to Stop Hypertension (DASH) score to assess diet quality, but different versions have been published. To derive a single DASH score allowing cross-country, cross-cohort and cross-period comparison and limiting data heterogeneity within the ALPHABET consortium, we harmonised food frequency questionnaire (FFQ) data collected before and during pregnancy in ≥26,500 women. Although FFQs differed strongly in length and content, we derived a consortium DASH score composed of eight food components by combining the prescriptive original DASH and the DASH described by Fung et al. Statistical issues tied to the nature of the FFQs led us to re-classify two food groups (grains and dairy products). Most DASH food components exhibited pronounced between-cohort variability, including non-full-fat dairy products (median intake ranging from 0.1 to 2.2 servings/day), sugar-sweetened beverages/sweets/added sugars (0.3–1.7 servings/day), fruits (1.1–3.1 servings/day), and vegetables (1.5–3.6 servings/day). We successfully developed a harmonized DASH score adapted to all cohorts being part of the ALPHABET consortium. This methodological work may benefit other research teams in adapting the DASH to their study’s specificities

    Shear Localization in Dynamic Deformation: Microstructural Evolution

    Full text link

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Measurements of the center-of-mass energies at BESIII via the di-muon process

    Get PDF
    From 2011 to 2014, the BESIII experiment collected about 5 fb-1 data at center-of-mass energies around 4 GeV for the studies of the charmonium-like and higher excited charmonium states. By analyzing the di-muon process e+e- → γISR/FSRμ+μ-, the center-of-mass energies of the data samples are measured with a precision of 0.8 MeV. The center-of-mass energy is found to be stable for most of the time during data taking

    Determination of the number of J/ψ events with inclusive J/ψ decays

    Get PDF
    A measurement of the number of J/ψ events collected with the BESIII detector in 2009 and 2012 is performed using inclusive decays of the J/ψ. The number of J/ψ events taken in 2009 is recalculated to be (223.7 ± 1.4) × 106, which is in good agreement with the previous measurement, but with significantly improved precision due to improvements in the BESIII software. The number of J/ψ events taken in 2012 is determined to be (1086.9 ± 6.0) × 106. In total, the number of J/ψ events collected with the BESIII detector is measured to be (1310.6 ± 7.0) × 106, where the uncertainty is dominated by systematic effects and the statistical uncertainty is negligible

    Measurement of the absolute branching fraction for Λc+→Λμ+νμ

    Get PDF
    We report the first measurement of the absolute branching fraction for Λc+→Λμ+νμ. This measurement is based on a sample of e+e− annihilation data produced at a center-of-mass energy s=4.6 GeV, collected with the BESIII detector at the BEPCII storage rings. The sample corresponds to an integrated luminosity of 567 pb−1. The branching fraction is determined to be B(Λc+→Λμ+νμ)=(3.49±0.46(stat)±0.27(syst))%. In addition, we calculate the ratio B(Λc+→Λμ+νμ)/B(Λc+→Λe+νe) to be 0.96±0.16(stat)±0.04(syst)

    Study of D+ →k-π+e+νe

    No full text
    We present an analysis of the decay D+→K-π+e+νe based on data collected by the BESIII experiment at the ψ(3770) resonance. Using a nearly background-free sample of 18262 events, we measure the branching fraction B(D+→K-π+e+νe)=(3.77±0.03±0.08)%. For 0.8<mKπ<1.0 GeV/c2, the partial branching fraction is B(D+→K-π+e+νe)[0.8,1.0]=(3.39±0.03±0.08)%. A partial wave analysis shows that the dominant K̄∗(892)0 component is accompanied by an S-wave contribution accounting for (6.05±0.22±0.18)% of the total rate and that other components are negligible. The parameters of the K̄∗(892)0 resonance and of the form factors based on the spectroscopic pole dominance predictions are also measured. We also present a measurement of the K̄∗(892)0 helicity basis form factors in a model-independent way
    corecore